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Recently, many researchers are interested in the investigation of an extended 
form of special functions like Gamma function, Beta function, Gauss 
hypergeometric function, Confluent hypergeometric function and Mittag-
Leffler function etc. Here, in this paper, the main objective is to find the 
composition of Caputo MSM fractional differential of the extended form of 
Mittag-Leffler function in terms of extended Beta function. Further, in this 
sequel, some corollaries and consequences are shown that are the special 
case of our main findings. 
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1. Introduction 

*Integral and differential operators in fractional 
calculus have become research subject in recently 
few decades due to ability of having arbitrary order. 
For more recent developments in fractional integral 
and differential operators, we refer the reader to see 
Agarwal and Choi (2016), Choi and Agarwal (2014), 
Choi and Agarwal (2015), Gehlot (2013), Gupta and 
Parihar (2017), Kilbas et al. (2004), Nadir et al. 
(2014), Rahman et  al. (2017b), Saxena and Parmar 
(2017), Shishkina and Sitnik (2017), Singh (2013), 
Srivastava and Agarwal (2013), Srivaastava et al. 
(2012), Suthar et al. (2017), and the references cited 
therein.  

Now a day, a general trend is in the extensions of 
special functions like Gamma function, Beta function, 
Gauss hypergeometric function and Mittag-Leffler 
function etc. due to its diverse applications in many 
applied fields. One can consult the papers by 
Chaudhry et al. (1997, 2004), Luo and Raina (2013), 
Özarslan and Yilmaz (2014), Rahman et al. (2017b), 
and Srivastava et al. (2012) containing the 
bibliography therein.  

Srivastava et al. (2012) defined a function 
 

Θ({ҝ𝑛}𝑛𝜖𝑁0; 𝑧) ≔

{
 
 

 
 ∑ ҝ𝑛

𝑧𝑛

𝑛!
∞
𝑛=0 (

|𝑧| < ℜ
0 < ℜ < ∞
ҝ0 ≔ 1

)

ᵯ0𝑧
𝜛exp⁡(𝑧) [1 + 𝛰 (

1

𝑍
)] (

ℜ(𝑧) → ∞
ᵯ0 > 0;𝜛𝜖𝐶

)
}
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where Θ({ҝn}nϵN0; z) is considered to be analytical 

within |z| < ℜ, 0 < ℜ < ∞ and {ҝn}nϵN0 is a 

sequence of Taylor-Maclaurin coefficients and⁡ᵯ0 
and 𝜛 are constants and depend upon the bounded 
sequence {ҝn}nϵN0 .   Corresponding to the 

function⁡Θ({ҝn}nϵN0; z), Srivastava et al. (2012) 

defined extended Gamma function, extended Beta 
function and extended Gauss hypergeometric 
function respectively as 

 

Γp
{ҝn}nϵN0(z) = ∫ xz−1

∞

0

Θ({ҝn}nϵN0; −x −
p

x
) dx 

(ℜ(z) > 0;ℜ(p) ≥ 0) 

Βp
({ҝn}nϵN0)(α, β; p) = ∫ xα−1(1

1

0

− x)β−1Θ({ҝn}nϵN0; −
p

x(1 − x)
) dx. 

(min{ℜ(α),ℜ(β)} ≥ 0;ℜ(p) ≥ 0) 

ℑ𝑝
({ҝn}nϵN0)(a, b; c; z) 

= ∑(𝑎)𝑘
Βp
({ҝn}nϵN0)(𝑏 + 𝑘, 𝑐 − 𝑏; 𝑝)

𝛣(𝑏, 𝑐 − 𝑏)

∞

𝑘=0

𝑧𝑘

𝑘!
 

(|𝑧| < 1;ℜ(𝑐) > ℜ(𝑏) > 0;ℜ(𝑝) ≥ 0) ℑ 

      
It is assumed that all the integrals existed. 

Corresponding to the extended Beta function 

Βp
({ҝn}nϵN0), Parmar (2015) defined extension of 

Mittag-Leffler function 
 

𝐸
𝜉,𝜍

({ҝn}nϵN0;𝛾)(𝑧; 𝑝)  

= ∑
Βp
({ҝn}nϵN0

)
(𝛾+𝑘,1−𝛾;𝑝)

𝛣(𝛾,1−𝛾)
∞
𝑘=0

𝑍𝑘

𝛤(𝜉𝑘+𝜍)
                                (1)  

 
where 
 

(
𝑧, 𝜍, 𝛾𝜖𝐶;ℜ(𝜉) > 0,

ℜ(𝜍) > 0,ℜ(𝛾) > 1; 𝑝 ≥ 0
)  
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It is noted that generalized and extended form of 
Mittag-Leffler function defined in literature by Desai 
et al. (2016), Kilbas et al. (2004), Mittag-Leffler 
(1903), Mittal et al. (2016), Nadir et al. (2014), 
Özarslan and Yilmaz (2014), and Rahman et al 
(2017a, 2017b) are special cases of the proposed 
function defined in (1). Some special cases of this 
function are descried as: 

 

(i) When ҝ𝑛 =
(𝜌)𝑛

(𝜎)𝑛
 then the extended form of (1) 

takes the form 

 

𝐸𝜉,𝜍
(𝜌,𝜎);𝛾(𝑧; 𝑝) = ∑

𝛣(𝜌,𝜎)(𝛾 + 𝑘, 1 − 𝛾; 𝑝)

𝛣(𝛾, 1 − 𝛾)

∞

𝑘=0

𝑧𝑘

𝛤(𝜉𝑘 + 𝜍)
 

 
under the condition 
 

(
𝑧, 𝜍, 𝛾𝜖𝐶; ℜ(𝜌) > 0,ℜ(𝜎) > 0

ℜ(𝜉) > 0,ℜ(𝜍) > 0,ℜ(𝛾) > 1; 𝑝 ≥ 0
)  

   
(ii) If we select a bounded sequence ҝ𝑛 = 1, then (1) 
reduces to the definition of Özarslan and Yilmaz 
(2014) 

 

𝐸𝜉,𝜍
𝛾 (𝑧; 𝑝) = ∑

Β(𝛾 + 𝑘, 1 − 𝛾; 𝑝)

𝛣(𝛾, 1 − 𝛾)

∞

𝑘=0

𝑧𝑘

𝛤(𝜉𝑘 + 𝜍)
 

(
𝑧, 𝜍, 𝛾𝜖𝐶;ℜ(𝜉) > 0,

ℜ(𝜍) > 0,ℜ(𝛾) > 1; 𝑝 ≥ 0
) 

 
(iii) Another special case of (1) is when ҝ𝑛 = 1, and 
𝑝 = 0 then (1) reduces to Prabhakar’s function 
(Prabhakar, 1971) of three parameters. 

 

𝐸𝜉,𝜍
𝛾 (𝑧; 𝑝) = ∑

(𝛾)𝑘𝑧
𝑘

𝛤(𝜉𝑘 + 𝜍)𝑘!

∞

𝑘=0

 

(𝜉, 𝜍, 𝛾𝜖𝐶;ℜ(𝜉) > 0,ℜ(𝜍) > 0) 

 
(iv) If we set𝛼 = 𝛽 = 1 then our expressions for 

𝐸
𝜉,𝜍

({ҝn}nϵN0 ;𝛾), 𝐸𝜉,𝜍
(ρ,𝜎);𝛾

 and 𝐸𝜉,𝜍
𝛾

 reduces to the extended 

confluent hypergeometric functions 
 

𝐸1,1
({ҝn}nϵN0;𝛾)(𝑧; 𝑝) = ϕ𝑝

({ҝn}nϵN0)(𝛾; 1; 𝑧)                (2) 

𝐸1,1
((p,q);𝛾)(𝑧; 𝑝) = ϕ𝑝

(p,q)
(𝛾; 1; 𝑧)                 (3) 

𝐸1,1
γ (𝑧; 𝑝) = ϕp(𝛾; 1; 𝑧)                  (4) 

 
In order to establish our main results, we need 

definition of Fox-Wright function and the concept of 
Hadamard products. 

 
Definition: As indicated by Pohlen (2009), Let 
𝑔(𝑧) ≔ ∑ 𝑥𝑘𝑧

𝑘∞
𝑘=0  and ℎ(𝑧) ≔ ∑ 𝑦𝑘𝑧

𝑘∞
𝑘=0  be two 

power series then the Hadamard product of power 
series is defined as  

 
(𝑔 ∗ ℎ)(𝑧) ≔ ∑ 𝑥𝑘𝑦𝑘𝑧

𝑘 = (ℎ ∙ 𝑔)(𝑧)∞
𝑘=0                 (5) 

(|𝑧| < 𝑅)      
 
where  

 

𝑅 = lim
𝑘→∞

|
𝑥𝑘𝑦𝑘

𝑥𝑘+1𝑦𝑘+1
| 

= ( lim
𝑘→∞

|
𝑥𝑘
𝑥𝑘+1

|) ∙ ( lim
𝑘→∞

|
𝑦𝑘
𝑦𝑘+1

|) = 𝑅𝑔 ∙ 𝑅ℎ 

 
where⁡𝑅𝑔 and⁡𝑅ℎ are the radii of convergence of two 

series 𝑔(𝑧) and ℎ(𝑧) respectively.  Therefore, in 
general,⁡⁡𝑅 ≥ 𝑅𝑔 ∙ 𝑅ℎ. 

 
It is to be noted that if one of the power series is 

an analytical function, then the Hadamard product 
series is also an analytical function.  

 
 

Definition: As considered by Samko et al. (1993), 
the generalized Wright’s function is defined as 
follows  
 

𝑝𝛹𝑞 [
(𝐴1, 𝛼1), … , (𝐴𝑝, 𝛼𝑝);

(𝐵1, 𝛽1), … , (𝐵𝑞 , 𝛽𝑞);
𝑧] 

= ∑
∏ 𝛤((𝐴𝑖 + 𝑘𝛼𝑖)
𝑝
𝑖=1

∏ 𝛤(𝐵𝑖 + 𝑘𝛽𝑖)
𝑞
𝑖=1

∞

𝑘=0

z𝑘

𝑘!
 

   
where the coefficients α1, … , αpϵℜ

+ and 𝛽1, … , 𝛽𝑞𝜖ℜ
+ 

with 1 + ∑ 𝛽𝑖
𝑞
𝑖=1 − ∑ 𝛼𝑖

𝑝
𝑖=1 ≥ 0. 

2. Caputo-type MSM fractional derivative formula 
for extended Mittag-leffler function 

Here, in this section, our main object is to 
establish composition of new fractional derivative 
formulas so called Caputo-type Marichev-Saigo–
Maeda fractional operator involving the extended 
Mittag-leffler function (1) which is defined by 
Parmar (2015). Some special cases of our main 
result are considered. We obtain our main goal by 
applying the Caputo-type MSM fractional derivative 
given in (8) and (9) to the proposed function (1). 
Thus, for this purpose, we need to recall the pair of 

fractional derivatives 𝐷0+,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

 and 𝐷0−,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

 

which are defined in terms of the corresponding 

pairs of fractional integral operator 𝐼0+
𝜔,𝜔/,𝜀,𝜀/,𝜂

 and 

𝐼0−
𝜔,𝜔/,𝜀,𝜀/,𝜂

 containing Appell function 𝐹3 as a kernel. 

 
Definition: As shown by Saigo and Maeda (1998), 
Let 𝜔,𝜔/, 𝜀, 𝜀/, 𝜂𝜖𝐶 and the left-sided and right-sided 
Marichev-Saigo-Maeda fractional integral operators 
containing Appell function 𝐹3 in their kernel are 
defined as 

 

(𝐼0+
𝜔,𝜔/,𝜀,𝜀/,𝜂

𝑓) (𝑥) =
𝑥−𝜔

𝛤(𝜂)
∫ (𝑥 − 𝑡)𝜂−1𝑡−𝜔

/∞

0
∙

𝐹3 (𝜔,𝜔
/, 𝜀, 𝜀/; 𝜂; 1 −

𝑡

𝑥
, 1 −

𝑥

𝑡
) 𝑓(𝑡)𝑑𝑡                                 (6) 

 
and 
 

(𝐼0−
𝜔,𝜔/,𝜀,𝜀/,𝜂

𝑓) (𝑥) =
𝑥−𝜔

/

𝛤(𝜂)
∫ (𝑡 − 𝑥)𝜂−1𝑡−𝜔
∞

0
∙

𝐹3 (𝜔,𝜔
/, 𝜀, 𝜀/; 𝜂; 1 −

𝑥

𝑡
, 1 −

𝑡

𝑥
) 𝑓(𝑡)𝑑𝑡                                 (7) 
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Let 𝜔,𝜔/, 𝜀, 𝜀/, 𝜂𝜖𝐶 and the left-sided and right-
sided Caputo-type MSM fractional differential 
operators containing Appell function in their kernel 
are defined as 

 

(𝐷0+,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

𝑓) (𝑥) = 

(𝐼0+
−𝜔/−𝜔,−𝜀/,−𝜀+[ℜ(𝜂)]+1,−𝜂+[ℜ(𝜂)+1]

𝑓([ℜ(𝜂)+1])) (𝑥)               (8) 

 
and 

 

(𝐷0−,𝔈
𝜔,𝜔 ,𝜀,𝜀 ,𝜂

𝑓) (𝑥)⁡(−1)[ℜ(𝜂)]+1 

(𝐼0+
−𝜔/−𝜔,−𝜀/,−𝜀+[ℜ(𝜂)]+1,−𝜂+[ℜ(𝜂)+1]

𝑓([ℜ(𝜂)+1])) (𝑥)             (9) 

 
Here, we discuss lemma, which is essential for the 

establishment of our main results. This lemma 
provides the image of power function 𝑡𝜌−1with 
Caputo-type Marichev-Saigo-Maeda fractional 
differentiation. 

 Lemma: Let 𝜔,𝜔/, 𝜀, 𝜀/, 𝜂, 𝜌𝜖𝐶 and 𝑚 = [ℜ(𝜂)] + 1 
 
(a)Under condition 

 

ℜ(𝜌) − 𝑚 > 𝑚𝑎𝑥 {
0,ℜ(−𝜔 + 𝜀)

ℜ(−𝜔 − 𝜔/ − 𝜀/ + 𝜂)
} 

 
then image will be 

 

(𝐷0+,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

𝑡𝜌−1) (𝑥) 

=
𝛤(𝜌)𝛤(𝜌 − 𝜀 + 𝜔 −𝑚)

𝛤(−𝜀 + 𝜌 −𝑚)𝛤(𝜔 + 𝜔/ − 𝜂 + 𝜌)

∙
𝛤(𝜔 + 𝜔/ + 𝜀/ − 𝜂 + 𝜌 −𝑚)

𝛤(𝜔 + 𝜀/ − 𝜂 + 𝜌 −𝑚)
𝑥𝜔+𝜔

/−𝜂+𝜌−1 

 
(b) If condition  
 

ℜ(𝜌) + 𝑚 > 𝑚𝑎𝑥 {
ℜ(−𝜀/),ℜ(𝜔/ + 𝜀 − 𝜂),

ℜ(𝜔 + 𝜔/ − 𝜂) + ℜ(𝜂) + 1
} 

 
is satisfied then image will be 

 

(𝐷0−,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

𝑡𝜌−1) (𝑥) 

=
𝛤(1 + 𝜀/ − 𝜌 +𝑚)𝛤(1 − 𝜔 − 𝜔/ + 𝜂 − 𝜌)

𝛤(1 − 𝜌)𝛤(1 − 𝜔/ + 𝜀/ − 𝜌 +𝑚)
 

∙
𝛤(1 − 𝜔/ − 𝜀 + 𝜂 − 𝜌 +𝑚)

𝛤(1 − 𝜔 −𝜔/ − 𝜀 + 𝜂 − 𝜌 +𝑚)
𝑥𝜔+𝜔

/−𝜂+𝜌−1 

 
Proof: (a) Now using the definition of left-sided 
Caputo-type MSM fractional differentiation operator, 
we have 
 

(𝐷0+,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

𝑡𝜌−1) (𝑥) 

= (𝐼0+
−𝜔/,−𝜔,−𝜖/+𝑚,−𝜀,−𝜂+𝑚 𝑑𝑚

𝑑𝑡𝑚
𝑡𝜌−1) (𝑥) 

=
𝛤(𝜌)

𝛤(𝜌 −𝑚)
(𝐼0+
−𝜔/,−𝜔,−𝜖/+𝑚,−𝜀,−𝜂+𝑚

𝑡𝜌−𝑚−1) (𝑥) 

 
Thus using the results about MSM integration 

from Saigo and Maeda (1998) that is 

(𝐼0+
𝜔,𝜔/,𝜀,𝜀/,𝜂

𝑡𝜌−1) (𝑥) 

=
𝛤(𝜌)𝛤(−𝜔/ + 𝜀/ + 𝜌)

𝛤(𝜀/ + 𝜌)𝛤(−𝜔 − 𝜔/ + 𝜂 + 𝜌)
 

∙
𝛤(−𝜔 − 𝜔/ + 𝜀 + 𝜂 + 𝜌)

𝛤(−𝜔/ − 𝜀 + 𝜂 + 𝜌)
𝑥−𝜔−𝜔

/+𝜂+𝜌−1 

       
then we reach the required result.  

 
(b) Analogous to above, using right-sided 
Caputo-type MSM differential operator, we have 

 

(𝐷0−,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

𝑡𝜌−1) (𝑥) 

= (−1)𝑚 (𝐼0−
−𝜔/,−𝜔,−𝜖/,−𝜀+𝑚,−𝜂+𝑚 𝑑𝑚

𝑑𝑡𝑚
𝑡𝜌−1) (𝑥) 

=
𝛤(1 − 𝜌 +𝑚)

𝛤(1 − 𝜌)
(𝐼0+
−𝜔/,−𝜔,−𝜖/,−𝜀+𝑚,−𝜂+𝑚

𝑡𝜌−𝑚−1) (𝑥) 

 
similarly, right-sided MSM integration result from 
Saigo and Maeda (1998) which is 

  

(𝐼0−
𝜔,𝜔/,𝜀,𝜀/,𝜂

𝑡𝜌−1) (𝑥) 

=
𝛤(1 − 𝜌 − 𝜀)𝛤(1 + 𝜔 + 𝜔/ − 𝜂 − 𝜌)

𝛤(1 − 𝜌)𝛤(1 + 𝜔 − 𝜀 − 𝜌)
 

∙
𝛤(1 + 𝜔 + 𝜀/ − 𝜂 − 𝜌)

𝛤(1 + 𝜔 +𝜔/ + 𝜀/ − 𝜂 − 𝜌)
𝑥−𝜔−𝜔

/+𝜂+𝜌−1 

          
we approach the required result.   

 
In main theorem, part (a) deals with the left-hand 

sided Caputo-type MSM fractional derivative and 
part (b) deals with the right-hand sided Caputo –
type MSM fractional derivative of the extended 
Mittag-Leffler function (1). 

Theorem: (a) Let 𝜔,𝜔/, 𝜀, 𝜀/, 𝜂, 𝜌𝜖𝐶,𝑚 = [ℜ(𝜂)] +
1 be such that 
 

ℜ(𝜌) − 𝑚 > 𝑚𝑎𝑥 {
0,ℜ(−𝜔 + 𝜀)

ℜ(−𝜔 − 𝜔/ − 𝜀/ + 𝜂)
} 

 
then 
 

(𝐷0+,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

(𝑡𝜌−1𝐸
𝜉,𝜍

({ҝn}nϵN0;𝛾)(𝑥𝑡𝜎))) (𝑧) 

= 𝑧𝜔+𝜔
/−𝜂+𝜌−1 ∙ 𝐸

𝜉,𝜍

({ҝn}nϵN0;𝛾)(𝑥𝑧𝜎) ∗4 Ψ3 [
∆
∆/
; 𝑥𝑧𝜎] 

 

where 
 

∆= {
(𝜌, 𝜎), (𝜔 − 𝜀 + 𝜌 −𝑚,𝜎),

(𝜔 + 𝜔/ + 𝜀/ − 𝜂 + 𝜌 −𝑚,𝜎), (1, 𝜎)
} 

∆/= {
(−𝜀 + 𝜌 −𝑚, 𝜎), (𝜔 + 𝜔/ − 𝜂 + 𝜌, 𝜎),

(𝜔 + 𝜀/ − 𝜂 + 𝜌 −𝑚, 𝜎)
} 

 
b) Let  𝜔,𝜔/, 𝜀, 𝜀/, 𝜂, 𝜌𝜖𝐶,𝑚 = [ℜ(𝜂)] + 1 be 
such that 
 

ℜ(𝜌) + 𝑚 > 𝑚𝑎𝑥 {
ℜ(−𝜀/), ℜ(𝜔/ + 𝜀 − 𝜂),

ℜ(𝜔 + 𝜔/ − 𝜂) + 𝑚
} 

 
then 
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(𝐷0−,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

(𝑡𝜌−1𝐸
𝜉,𝜍

({ҝn}nϵN0;𝛾)(𝑥𝑡−𝜎))) (𝑧) 

= 𝑧𝜔+𝜔
/−𝜂+𝜌−1 

∙ 𝐸
𝜉,𝜍

({ҝn}nϵN0;𝛾)(𝑥𝑧−𝜎) ∗4 Ψ3 [
Ω
Ω/
; 𝑥𝑧−𝜎] 

 
where 

 

Ω = {
(1 + 𝜀/ − 𝜌 +𝑚, 𝜎), (1 − 𝜔 − 𝜔/ + 𝜂 − 𝜌, 𝜎)

(1 − 𝜔/ − ε + 𝜂 − 𝜌 +𝑚, 𝜎), (1, 𝜎)
}  

Ω/ = {
(1 − 𝜌, 𝜎), (1 − 𝜔/ + 𝜀/ − 𝜌 +𝑚, 𝜎),

(1 − 𝜔 − 𝜔/ − 𝜀 + 𝜂 − 𝜌 + 𝑚, 𝜎)
} 

 
Proof: Using the proposed function (1) and the 

definition of (𝐷0+,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

𝑓) (𝑥), and due to uniform 

convergence, order of summation and integration is 
changeable. Thus, we get 
 

(𝐷0+,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

(𝑡𝜌−1𝐸
𝜉,𝜍

({ҝn}nϵN0;𝛾)(𝑥𝑡𝜎))) (𝑧) 

= ∑
Βp
({ҝn}nϵN0)(𝛾 + 𝑘, 1 − 𝛾; 𝑝)

𝛣(𝛾, 1 − 𝛾)

∞

𝑘=0

𝑥𝑘

𝛤(𝜉𝑘 + 𝜍)
 

∙ (𝐷0+,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

𝑡𝜌+𝜎𝑘−1) (𝑥) 

 
thus, using the result of the lemma part (a) and 
replacing 𝜌 by 𝜌 + 𝜎𝑘 , we have 
 

(𝐷0+,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

(𝑡𝜌−1𝐸
𝜉,𝜍

({ҝn}nϵN0;𝛾)(𝑥𝑡𝜎))) (𝑧) 

= ∑
Βp
({ҝn}nϵN0)(𝛾 + 𝑘, 1 − 𝛾; 𝑝)

𝛣(𝛾, 1 − 𝛾)

∞

𝑘=0

𝑥𝑘

𝛤(𝜉𝑘 + 𝜍)

∙
𝛤(𝜌 + 𝜎𝑘)𝛤(𝜌 − 𝜀 + 𝜔 + 𝜎𝑘 −𝑚)

𝛤(−𝜀 + 𝜌 + 𝜎𝑘 −𝑚)𝛤(𝜔 + 𝜔/ − 𝜂 + 𝜌 + 𝜎𝑘)
 

∙
𝛤(𝜔 + 𝜔/ + 𝜀/ − 𝜂 + 𝜌 + 𝜎𝑘 − 𝑚)

𝛤(𝜔 + 𝜀/ − 𝜂 + 𝜌 + 𝜎𝑘 − 𝑚)
∙ 𝑧𝜔+𝜔

/−𝜂+𝜌+𝜎𝑘−1 

 
The last expression can easily be emerged by 

using Hadamard product rule given in Pohlen (2009) 
and we get the result. 

    
(b) Analogously to the proof of above part, our 
demonstration of Caputo fractional derivative 
formula, depends upon the definition of the function 
(1) and the known result part (b) of the lemma, we 
have 
 

(𝐷0−,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

(𝑡𝜌−1𝐸
𝜉,𝜍

({ҝn}nϵN0;𝛾)(𝑥𝑡−𝜎))) (𝑧) 

= ∑
Βp
({ҝn}nϵN0)(𝛾 + 𝑘, 1 − 𝛾; 𝑝)

𝛣(𝛾, 1 − 𝛾)

∞

𝑘=0

𝑥𝑘

𝛤(𝜉𝑘 + 𝜍)
 

 

𝐷0−,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

𝑡𝜌−𝜎𝑘−1 

 
Now using the result of the lemma part (b) and 

changing 𝜌 by 𝜌 − 𝜎𝑘, we have 
 

(𝐷0−,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

(𝑡𝜌−1𝐸
𝜉,𝜍

({ҝn}nϵN0;𝛾)(𝑥𝑡−𝜎))) (𝑧) 

= ∑
Βp
({ҝn}nϵN0)(𝛾 + 𝑘, 1 − 𝛾; 𝑝)

𝛣(𝛾, 1 − 𝛾)

∞

𝑘=0

𝑥𝑘

𝛤(𝜉𝑘 + 𝜍)
 

=
𝛤(1 + 𝜀/ − 𝜌 + 𝜎𝑘 +𝑚)𝛤(1 − 𝜔 − 𝜔/ + 𝜂 − 𝜌 + 𝜎𝑘)

𝛤(1 − 𝜌 + 𝜎𝑘)𝛤(1 − 𝜔/ + 𝜀/ − 𝜌 + 𝜎𝑘 +𝑚)
 

∙
𝛤(1 − 𝜔/ − 𝜀 + 𝜂 − 𝜌 + 𝜎𝑘 +𝑚)

𝛤(1 − 𝜔 −𝜔/ − 𝜀 + 𝜂 − 𝜌 + 𝜎𝑘 + 𝑚)
 

∙ 𝑧𝜔+𝜔
/−𝜂+𝜌−𝜎𝑘−1 

 
Thus, with the help of a Hadmard product, last 

continuation expression converted into the required 
expression. 

Number of formations of various types of Mittag-
Leffler function depends upon parameters. Our main 
results can be deduced into numerous fractional 
calculus results defined by many authors. Setting 
ҝ𝑛 → 1the main Theorem yields the following result 
and the proposed function (1) reduced to the 
definition of Özarslan and Yilmaz (2014). 

Corollary: Let the parameters 𝜔,𝜔/, 𝜀, 𝜀/, 𝜂, 𝜌𝜖𝐶,
𝑚 = [ℜ(𝜂)] + 1 and under the stated conditions the 
left and the right-sided Caputo fractional differential 
operators of extended Mittag-Leffler function 
defined by Özarslan and Yilmaz (2014) is given 
below 

 

(𝐷0+,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

(𝑡𝜌−1𝐸𝜉,𝜍
𝛾
(𝑥𝑡𝜎))) (𝑧) 

= 𝑧𝜔+𝜔
/−𝜂+𝜌−1 ∙ 𝐸𝜉,𝜍

𝛾
(𝑥𝑧𝜎) ∗4 Ψ3 [

∆1

∆1
/; 𝑥𝑧

𝜎] 

 
where 
 

∆1= {
(𝜌, 𝜎), (𝜔 − 𝜀 + 𝜌 −𝑚, 𝜎),

(𝜔 + 𝜔/ + 𝜀/ − 𝜂 + 𝜌 −𝑚, 𝜎), (1, 𝜎)
} 

∆1
/
= {

(−𝜀 + 𝜌 −𝑚, 𝜎), (𝜔 + 𝜔/ − 𝜂 + 𝜌, 𝜎),

(𝜔 + 𝜀/ − 𝜂 + 𝜌 −𝑚,𝜎)
} 

 
and 
 

(𝐷0−,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

(𝑡𝜌−1𝐸𝜉,𝜍
𝛾
(𝑥𝑡−𝜎))) (𝑧) 

= 𝑧𝜔+𝜔
/−𝜂+𝜌−1 ∙ 𝐸𝜉,𝜍

𝛾
(𝑥𝑧−𝜎) ∗4 Ψ3 [

Ω1

Ω1
/ ; 𝑥𝑧

−𝜎] 

 
where 
 

Ω1 = {
(1 + 𝜀/ − 𝜌 +𝑚, 𝜎), (1 − 𝜔 − 𝜔/ + 𝜂 − 𝜌, 𝜎),

(1 − 𝜔/ − ε + 𝜂 − 𝜌 + 𝑚, 𝜎), (1, 𝜎)
}  

Ω1
/
= {

(1 − 𝜌, 𝜎), (1 − 𝜔/ + 𝜀/ − 𝜌 +𝑚, 𝜎),

(1 − 𝜔 − 𝜔/ − 𝜀 + 𝜂 − 𝜌 +𝑚, 𝜎)
} 

 
It is to be noted that for suitable selection of 

ҝ𝐧numerous fractional calculus results can be 
deduced for number of types of Mittag-Leffler 
function defined in literature. 

Further, if we replace ξ = ς = 1 then extensions 
of Mittag-Leffler function can be expressed in terms 
of the extended confluent hypergeometric functions 
(2), (3) and (4). Then we have the following relation: 
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Corollary: 

(𝐷0+,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

(𝑡𝜌−1ϕ𝑝
({ҝn}nϵN0)(γ; 1; x𝑡𝜎))) (𝑧) 

= 𝑧𝜔+𝜔
/−𝜂+𝜌−1 ∙ ϕ𝑝

({ҝn}nϵN0)(𝛾; 1; 𝑥𝑧𝜎) ∗4 Ψ3 [
∆2

∆2
/ ; 𝑥𝑧

𝜎] 

 
where 
 

∆2= {
(𝜌, 𝜎), (𝜔 − 𝜀 + 𝜌 −𝑚, 𝜎),

(𝜔 + 𝜔/ + 𝜀/ − 𝜂 + 𝜌 −𝑚, 𝜎), (1, 𝜎)
} 

∆2
/
= {

(−𝜀 + 𝜌 −𝑚, 𝜎), (𝜔 + 𝜔/ − 𝜂 + 𝜌, 𝜎),

(𝜔 + 𝜀/ − 𝜂 + 𝜌 −𝑚, 𝜎)
} 

 
and 
 

(𝐷0−,𝔈
𝜔,𝜔/,𝜀,𝜀/,𝜂

(𝑡𝜌−1ϕ𝑝
({ҝn}nϵN0)(γ; 1; x𝑡−𝜎))) (𝑧) 

= 𝑧𝜔+𝜔
/−𝜂+𝜌−1 

∙ ϕ𝑝
({ҝn}nϵN0)(𝛾; 1; 𝑥𝑧−𝜎) ∗4 Ψ3 [

Ω2

Ω2
/ ; 𝑥𝑧

−𝜎] 

 
where 
 

Ω2 = {
(1 + 𝜀/ − 𝜌 +𝑚, 𝜎), (1 − 𝜔 −𝜔/ + 𝜂 − 𝜌, 𝜎),

(1 − 𝜔/ − ε + 𝜂 − 𝜌 +𝑚,𝜎), (1, 𝜎)
}  

Ω2
/
= {

(1 − 𝜌, 𝜎), (1 − 𝜔/ + 𝜀/ − 𝜌 +𝑚,𝜎),

(1 − 𝜔 − 𝜔/ − 𝜀 + 𝜂 − 𝜌 + 𝑚, 𝜎)
} 

Remark: Several further consequences of our main 
result and above corollary (1) and (2) can easily be 
derived by selecting different values of the bounded 
sequence ҝ𝐧.  If we set⁡ξ = ς = 1 and ҝn = 0 then the 
above results reduces for classical confluent 
hypergeometric functions. On replacing ξ = ς = 1 
and ҝn = 1, we get results for extended form of 
confluent hypergeometric function defined by 
Özarslan and Yilmaz (2014). Further, on setting⁡ξ =

ς = 1 and ҝn =
(ρ)n

(σ)n
 then the relation of the above 

corollary becomes for the confluent hypergeometric 
function defined by Chaudhry et al. (1997, 2004). 

3. Further special cases  

First time Rao et al. (2010) introduced and 
defined Caputo-type fractional derivative involving 
Gauss hypergeometric function in its kernel. Thus for 
⁡𝜔, 𝜀, 𝜂𝜖𝐶 and⁡𝑥𝜖ℜ+ with ℜ(𝜔) > 0 Caputo fractional 
differentiation of Saigo’s operators associated with 
Gauss hypergeometric function are defined as 

 
(𝐷0+,𝔈

𝜔,𝜀,𝜂
𝑓)(𝑥) = 

(𝐼0+
−𝜔+[ℜ(𝜔)]+1,−𝜀−[ℜ(𝜔)]−1,𝜔+𝜂−[ℜ(𝜔)]−1

𝑓([ℜ(𝜔)+1])) (𝑥) 

    
and 

 
(𝐷0−,𝔈

𝜔,,𝜀,𝜂
𝑓)(𝑥) = (−1)[ℜ(𝜔)]+1 

∙ (𝐼0−
−𝜔+[ℜ(𝜔)]+1,−𝜀−[ℜ(𝜔)]−1,𝜔+𝜂

𝑓([ℜ(𝜔)+1])) (𝑥) 

Remark: Caputo-type MSM fractional differential 
operators are associated with Appell function 𝐹3 

reduces to the Caputo fractional differential 
operators associated with hypergeometric function 
as follows having the following relationship: 

 

(𝐷0+,𝔈
0,𝜔/,𝜀,𝜀/,𝜂

𝑓) (𝑧) = (𝐷0+,𝔈
𝜂,𝜔/,−𝜂,,𝜀/−𝜂

𝑓) (𝑧) 

 
and 

 

(𝐷0−,𝔈
0,𝜔/,𝜀,𝜀/,𝜂

𝑓) (𝑧) = (𝐷0−,𝔈
𝜂,𝜔/,−𝜂,,𝜀/−𝜂

𝑓) (𝑧) 

 
Further on setting 𝜀 → 0 in a Saigo Caputo 

differentiation operator reduces immediately to the 
Erdelyi-Kober fractional Caputo-type operator 
having the following relationship 

 

𝐷𝜂,𝜔
+,𝔈 = 𝐷0+,𝔈

𝜔,0,𝜂
  and 𝐷𝜂,𝜔

−,𝔈 = 𝐷0−,𝔈
𝜔,0,𝜂

 

 
Thus we get new fractional differential formulas 

of left- and right-sided Saigo and Erdelyi-Kober 
Caputo fractional differential operators stated in 
corollaries below. 

Corollary:  Let 𝜔, 𝜀, 𝜂, 𝜌𝜖𝐶,𝑚 = [ℜ(𝜂)] + 1 be such 
that  ℜ(𝜌) − 𝑚 > 𝑚𝑎𝑥{0,ℜ(−𝜔 − 𝜀 − 𝜂)}. Then the 
left-hand sided generalized Caputo fractional 
differentiation 𝐷0+,𝔈

𝜔,𝜀,𝜂
 of extended Mittag-leffler 

function is given by for 𝑧 > 0. Then we have the 
following relation: 
 

(𝐷0+,𝔈
𝜔,𝜀,𝜂

(𝑡𝜌−1𝐸
𝜉,𝜍

({ҝn}nϵN0;𝛾)(𝑥𝑡𝜎))) (𝑧) 

= 𝑧𝜀+𝜌−1 

∙ 𝐸
𝜉,𝜍

({ҝn}nϵN0;𝛾)(𝑥𝑧𝜎) ∗3 Ψ2 [
∆3

∆3
/ ; 𝑥𝑧

𝜎] 

∆3= {(𝜌, 𝜎), (𝜔 + 𝜀 + 𝜂 + 𝜌 −𝑚, 𝜎), (1, 𝜎)} 

∆3
/
= {(𝜀 + 𝜌, 𝜎), (𝜂 + 𝜌 − 𝑚, 𝜎)}  
 

And under the condition 𝜔, 𝜀, 𝜂, 𝜌𝜖𝐶,𝑚 = [ℜ(𝜂)] +
1⁡Such that 
 
ℜ(𝜌) + 𝑚 > 𝑚𝑎𝑥{ℜ(𝜀) + 𝑚,ℜ(−𝜔 − 𝜂)} 
 
the right-hand sided generalized Caputo fractional 
differentiation 𝐷0−,𝔈

𝜔,,𝜀,𝜂
 of extended Mittag-leffler 

function is given by for 𝑧 > 0 
 

(𝐷0−,𝔈
𝜔,𝜀,𝜂

(𝑡𝜌−1𝐸
𝜉,𝜍

({ҝn}nϵN0;𝛾)(𝑥𝑡−𝜎))) (𝑧) 

= 𝑧𝜀+𝜌−1 

∙ 𝐸
𝜉,𝜍

({ҝn}nϵN0;𝛾)(𝑥𝑧−𝜎) ∗3 Ψ2 [
Ω3

Ω3
/ ; 𝑥𝑧

−𝜎] 

     
where 
 

Ω3 = {
(1 − 𝜀 − 𝜌, 𝜎), (1 + 𝜔 + 𝜂 − 𝜌 +𝑚, 𝜎),

(1, 𝜎)
}  

Ω3
/
= {(1 − 𝜌, 𝜎), (1 − 𝜀 + 𝜂 − 𝜌 +𝑚,𝜎)} 

Corollary: Let 𝜔, 𝜀, 𝜂, 𝜌𝜖𝐶,𝑚 = [ℜ(𝜂)] + 1⁡be such 
that ℜ(𝜌) − 𝑚 > 𝑚𝑎𝑥{0,ℜ(−𝜔 − 𝜂)} then the left-
hand sided generalized Caputo-type Erdelyi-Kober 



Aneela Nadir, Adnan Khan /International Journal of Advanced and Applied Sciences, 5(10) 2018, Pages: 28-34 

33 

fractional differentiation 𝐷𝜂,𝜔
+,𝔈⁡(= 𝐷0+,𝔈

𝜔,,0,𝜂
)⁡of extended 

Mittag-Leffler function is given by for 𝑧 > 0 

𝐷𝜂,𝜔
+,𝔈 (𝑡𝜌−1𝐸

𝜉,𝜍

({ҝn}nϵN0;𝛾)(𝑥𝑡𝜎)) (𝑧) == 𝑧𝜌−1 

∙ 𝐸
𝜉,𝜍

({ҝn}nϵN0;𝛾)(𝑥𝑧𝜎) ∗2 Ψ1 [
∆4

∆4
/ ; 𝑥𝑧

𝜎]  

∆4= {(𝜔 + 𝜂 + 𝜌 −𝑚, 𝜎), (1, 𝜎)} 

∆4
/
= {(𝜂 + 𝜌 −𝑚, 𝜎)} 

and under the stated conditions 
𝜔, 𝜀, 𝜂, 𝜌𝜖𝐶,𝑚 = [ℜ(𝜂)] + 1 such that 
ℜ(𝜌) + 𝑚 > 𝑚𝑎𝑥{𝑚,ℜ(−𝜔 − 𝜂)} then the right-
hand sided generalized Caputo-type Erdelyi-Kober 

fractional differentiation 𝐷𝜂,𝜔
−,𝔈⁡(= 𝐷0−,𝔈

𝜔,,0,𝜂
) of extended 

Mittag-leffler function is given by for 𝑧 > 0 

𝐷𝜂,𝜔
−,𝔈 (𝑡𝜌−1𝐸

𝜉,𝜍

({ҝn}nϵN0;𝛾)(𝑥𝑡−𝜎)) (𝑧) == 𝑧𝜌−1 

∙ 𝐸
𝜉,𝜍

({ҝn}nϵN0;𝛾)(𝑥𝑧−𝜎) ∗2 Ψ1 [
Ω4

Ω4
/ ; 𝑥𝑧

−𝜎] 

where 

Ω4 = {(1 + 𝜔 + 𝜂 − 𝜌 +𝑚, 𝜎), (1, 𝜎)} 

Ω4
/
= {(1 + 𝜂 − 𝜌 +𝑚, 𝜎)} 

It is to be noted that several further consequences 
of the main Theorem and Corollaries 3-4 can easily 
be converted to many other known result by suitable 
substitutions of the parameters. 

4. Conclusion

In this paper, we obtain the Caputo type MSM 
fractional derivative of family of Mittag-Leffler 
function. It is to be noted that said operator 
transform the required function into a function of 
higher order. Further, well known operators like 
Erdelyi-Kober and Saigo’s operators are the special 
case of Marichev-Saigo-Maeda fractional operator. 
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